Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microbiology Research ; 13(4):788-808, 2022.
Article in English | MDPI | ID: covidwho-2071637

ABSTRACT

After two years into the pandemic of the coronavirus disease 2019 (COVID-19), it remains unclear how the host RNA interference (RNAi) pathway and host miRNAs regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and impact the development of COVID-19. In this study, we profiled small RNAs in SARS-CoV-2-infected human ACE2-expressing HEK293T cells and observed dysregulated host small RNA groups, including specific host miRNAs that are altered in response to SARS-CoV-2 infection. By comparing dysregulated miRNAs in different SARS-CoV-2-infected samples, we identified miRNA-210-3p, miRNA-30-5p, and miR-146a/b as key host miRNAs that may be involved in SARS-CoV-2 infection. Furthermore, by comparing virally derived small RNAs (vsmRNAs) in different SARS-CoV-2-infected samples, we observed multiple hot spots in the viral genome that are prone to generating vsmRNAs, and their biogenesis can be dependent on the antiviral isoform of Dicer. Moreover, we investigated the biogenesis of a recently identified SARS-CoV-2 viral miRNA encoded by ORF7a and found that it is differentially expressed in different infected cell lines or in the same cell line with different viral doses. Our results demonstrate the involvement of both host small RNAs and vsmRNAs in SARS-CoV-2 infection and identify these small RNAs as potential targets for anti-COVID-19 therapeutic development.

2.
iScience ; 25(1): 103684, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1587460

ABSTRACT

The COVID-19 outbreak poses a serious threat to global public health. Effective countermeasures and approved therapeutics are desperately needed. In this study, we screened a small molecule library containing the NCI-DTP compounds to identify molecules that can prevent SARS-CoV-2 cellular entry. By applying a luciferase assay-based screening using a pseudotyped SARS-CoV-2-mediated cell entry assay, we identified a small molecule compound Q34 that can efficiently block cellular entry of the pseudotyped SARS-CoV-2 into human ACE2-expressing HEK293T cells, and inhibit the infection of the authentic SARS-CoV-2 in human ACE2-expressing HEK293T cells, human iPSC-derived neurons and astrocytes, and human lung Calu-3 cells. Importantly, the safety profile of the compound is favorable. There is no obvious toxicity observed in uninfected cells treated with the compound. Thus, this compound holds great potential as both prophylactics and therapeutics for COVID-19 and future pandemics by blocking the entry of SARS-CoV-2 and related viruses into human cells.

3.
Sci Rep ; 11(1): 17146, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1373450

ABSTRACT

The transcriptome of SARS-CoV-2-infected cells that reflects the interplay between host and virus has provided valuable insights into mechanisms underlying SARS-CoV-2 infection and COVID-19 disease progression. In this study, we show that SARS-CoV-2 can establish a robust infection in HEK293T cells that overexpress human angiotensin-converting enzyme 2 (hACE2) without triggering significant host immune response. Instead, endoplasmic reticulum stress and unfolded protein response-related pathways are predominantly activated. By comparing our data with published transcriptome of SARS-CoV-2 infection in other cell lines, we found that the expression level of hACE2 directly correlates with the viral load in infected cells but not with the scale of immune responses. Only cells that express high level of endogenous hACE2 exhibit an extensive immune attack even with a low viral load. Therefore, the infection route may be critical for the extent of the immune response, thus the severity of COVID-19 disease status.


Subject(s)
Gene Expression Profiling , Immunity, Innate/genetics , SARS-CoV-2/physiology , HEK293 Cells , Humans , SARS-CoV-2/immunology
4.
Pharmacol Res ; 160: 105074, 2020 10.
Article in English | MEDLINE | ID: covidwho-1364403

ABSTRACT

PURPOSE: Traditional Chinese medicine (TCM) has fully engaged and played an essential role in the prevention and treatment of Coronavirus Disease 2019 (COVID-19). This study compares relevant standards on high-frequent Chinese Materia Medicia (CMM) used in this pandemic aiming at reaching a global consensus and ensuring the use of Chinese medicines safely. METHODS: 141 representative Chinese formulas and Chinese Patent Medicines from the National Protocol and the most of Provincial Protocols for controlling COVID-19 in China have been collected to statistical analyze the composition and characteristics of CMM. Among them, the domestic and international standards of 47 varieties with the frequency usage over 10 times were selected to compare their quality requirements in the mainstream pharmacopoeias and international standards. RESULTS: The quality requirements of used CMM for fighting COVID-19 on the terms of overall quality control, marker compounds, and safety indicators showed different patterns in these mainstream pharmacopoeias and international standards. The uniformed and scientific quality standards of CMM were urgently needed to promote global acceptation and trade. CONCLUSIONS: These findings will provide evidence for building unified quality and safety standards that can adapt to the characteristics of CMM and promote international trade, and also will be stated that it is of the highest priority for ISO/TC 249 to formulate high-quality standards that consolidate international consensus to ensure quality and safety of the urgently needed CMM.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/therapeutic use , Materia Medica/standards , Medicine, Chinese Traditional/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/drug therapy , Drug Compounding , Drugs, Chinese Herbal/adverse effects , Humans , Materia Medica/adverse effects , Materia Medica/therapeutic use , Patient Safety , Pharmacopoeias as Topic , Public Health , Quality Control , COVID-19 Drug Treatment
5.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1209738

ABSTRACT

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacokinetics , Phytochemicals/pharmacokinetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Biological Availability , Biotransformation , Capsules , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/adverse effects , Female , Glycyrrhiza/adverse effects , HEK293 Cells , Humans , Liddle Syndrome/chemically induced , Liddle Syndrome/enzymology , Male , Patient Safety , Phytochemicals/administration & dosage , Phytochemicals/adverse effects , Rats, Sprague-Dawley , Risk Assessment
6.
Cell Stem Cell ; 28(2): 331-342.e5, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1009887

ABSTRACT

ApoE4, a strong genetic risk factor for Alzheimer disease, has been associated with increased risk for severe COVID-19. However, it is unclear whether ApoE4 alters COVID-19 susceptibility or severity, and the role of direct viral infection in brain cells remains obscure. We tested the neurotropism of SARS-CoV2 in human-induced pluripotent stem cell (hiPSC) models and observed low-grade infection of neurons and astrocytes that is boosted in neuron-astrocyte co-cultures and organoids. We then generated isogenic ApoE3/3 and ApoE4/4 hiPSCs and found an increased rate of SARS-CoV-2 infection in ApoE4/4 neurons and astrocytes. ApoE4 astrocytes exhibited enlarged size and elevated nuclear fragmentation upon SARS-CoV-2 infection. Finally, we show that remdesivir treatment inhibits SARS-CoV2 infection of hiPSC neurons and astrocytes. These findings suggest that ApoE4 may play a causal role in COVID-19 severity. Understanding how risk factors impact COVID-19 susceptibility and severity will help us understand the potential long-term effects in different patient populations.


Subject(s)
Apolipoproteins E/metabolism , Brain/pathology , Brain/virology , COVID-19/virology , Induced Pluripotent Stem Cells/virology , SARS-CoV-2/physiology , Tropism/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/virology , Cell Differentiation , Chlorocebus aethiops , Humans , Nerve Degeneration/pathology , Neurites/pathology , Neurons/drug effects , Neurons/pathology , Neurons/virology , Organoids/drug effects , Organoids/pathology , Organoids/virology , Protein Isoforms/metabolism , Synapses/pathology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL